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Abstract

Background: Phylodynamics, the study of the interaction between epidemiological and pathogen evolutionary
processes within and among populations, was originally defined in the context of rapidly evolving viruses and used
to characterize transmission dynamics. The concept of phylodynamics has evolved since the early 21st century,
extending its reach to slower-evolving pathogens, including bacteria and fungi, and to the identification of
influential factors in disease spread and pathogen population dynamics.

Results: The phylodynamic approach has now become a fundamental building block for the development of
comparative phylogenetic tools capable of incorporating epidemiological surveillance data with molecular
sequences into a single statistical framework. These innovative tools have greatly enhanced scientific investigations
of the temporal and geographical origins, evolutionary history, and ecological risk factors associated with the
growth and spread of viruses such as human immunodeficiency virus (HIV), Zika, and dengue and bacteria such as
Methicillin-resistant Staphylococcus aureus.

Conclusions: Capitalizing on an extensive review of the literature, we discuss the evolution of the field of infectious
disease epidemiology and recent accomplishments, highlighting the advancements in phylodynamics, as well as
the challenges and limitations currently facing researchers studying emerging pathogen epidemics across the
globe.

Keywords: Molecular epidemiology, Phylodynamics, Phylogeography, Comparative phylogenetics, HIV, Zika,
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Background
Globalization has dramatically changed the way in which
pathogens spread among human populations and enter
new ecosystems [1, 2]. Through migration, travel, trade,
and various other channels, humans have and will
continue to intentionally or unintentionally introduce
new organisms into virgin ecosystems with potentially
catastrophic consequences [3]. Humans are not the only
culprits, however; global climate pattern changes can
alter local ecosystems, creating favorable conditions for
the rapid spread of previously overlooked or even undis-
covered organisms among humans, giving rise to unex-
pected epidemics [4, 5]. Recent years have been marked
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by global epidemics of Ebola, dengue, and Zika, derived
from pathogens previously restricted to local outbreaks
[6]. According to the World Health Organization, more
than one and a half billion people are currently awaiting
treatment for neglected tropical diseases with similar po-
tential for global spread, for which we have limited
knowledge of etiology and treatment options [7]. This
lack of knowledge further limits our ability to investigate
the putative role of these pathogens in future epidemics
or even pandemics.
Epidemiological strategies have been and still are the

first line of defense against an outbreak or epidemic.
Despite conventionality, traditional epidemiological
methods for the analysis of global infectious diseases are
subject to errors from various sources (Fig. 1) and are
thus often inadequate to investigate the epidemiology of
an infectious disease. Putative outbreak investigations
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Fig. 1 Benefits and limitations of epidemiological surveillance and phylodynamic methods employed for control of infectious disease
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typically ensue following case notification of one of the
diseases recognized by local and global public health or-
ganizations. Trained investigators subsequently collect
data on cases and diagnoses to establish a disease clus-
ter. During active surveillance, more cases may be de-
tected through outreach to healthcare facilities and
nearby health departments. Relevant case contacts, such
as family, friends, and partners, are also sought to pro-
vide details on demographics, clinical diagnoses, and
other potential risk factors associated with the spread of
the disease [8]. However, the lack of infrastructure,
trained personnel, and resources in low- and middle-
income countries are prohibitive against field epidemi-
ology investigations, as contact tracing and surveillance
both require systematic, unbiased, and detailed investi-
gations. The reconstruction and interpretation of trans-
mission networks are often very sensitive to response,
selection, and recall biases and are strictly limited by
surveillance data collected in many regions with diverse
socioeconomic and cultural backgrounds [9–11]. In
addition, even with a highly effective surveillance system,
environmental, zoonotic, and vector-borne transmission
dynamics confound analysis by shadowing alternative
(i.e., not human-to-human) routes of disease acquisition.
Furthermore, routine analyses of pathogen subtype and
drug resistance are conducted only in a subset of de-
veloped nations, wherein variation in screening assays
and protocols and therapy regimens increases the dis-
cordance in surveillance [12, 13].
Despite the limitations to traditional infectious disease

epidemiology, major advances in study designs and
methods for epidemiological data analysis have been
made over the past decade for a multifaceted investiga-
tion of the complexity of disease at both the individual
and population levels [14, 15]. However, many chal-
lenges for infectious disease research remain salient in
contemporary molecular epidemiology, such as the in-
corporation of intra- and inter-host pathogen population
characteristics as influential factors of transmission.
Combating current and future emerging pathogens with
potential for global spread requires innovative concep-
tual frameworks, new analytical tools, and advanced
training in broad areas of research related to infectious
diseases [16–18]. An expanded multi-disciplinary ap-
proach posits advancement in infectious disease epi-
demiology research and control in an era of economic
and health globalization [2, 16, 19, 20].
Fortunately, recent developments in phylogenetic

methods have made possible the ability to detect evolu-
tionary patterns of a pathogen over a natural timescale
(months-years) and allow for researchers to assess the
pathogen’s ecological history imprinted within the
underlying phylogeny. When reconstructed within the
coalescent framework, and assuming a clock-like rate
of evolution, the evolutionary history of a pathogen
can provide valuable information as to the origin and
timing of major population changes [21]. Phylogenetic
methods also provide key information as to the evolu-
tion of both genotypic and phenotypic characteristics,
such as subtype and drug resistance (Fig. 1). Even
though phylogenetic methods are also limited in
certain areas, such as restriction of analysis to only the
infected population, a significant subset of these limi-
tations can be overcome by complementary use of data
from surveillance (both disease and syndromic) and
monitoring [22] (Fig. 1).
By integrating phylogenetic methods with traditional

epidemiological methods, researchers are able to infer
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relationships between surveillance data and patterns in
pathogen population dynamics, such as genetic diversity,
selective pressure, and spatiotemporal distribution. Sys-
tematic investigation of these relationships, or phylody-
namics [23], offers a unique perspective on infectious
disease epidemiology, enabling researchers to better
understand the impact of evolution on, for example, spa-
tiotemporal dispersion among host populations and
transmission among network contacts, and vice versa
[21, 24]. The study of the interconnectedness of these
pathogen characteristics was previously limited by the
cost and timescale of the generation of molecular data.
Recent decades have been characterized by technology
with the ability to rapidly generate serial molecular data
from identifiable sources for which we can obtain
detailed relevant information through epidemiological
surveillance, allowing for the merging of phylodynamics
and epidemiology, or evolutionary epidemiology [24, 25].
Hence, progress in the field of molecular evolution has
provided the opportunity for real-time assessment of the
patterns associated with local, national, and global out-
breaks [26], cross-species transmission events and charac-
teristics [27], and the effectiveness of treatment strategies
on current [28] and recurring epidemics [29]. These as-
sessments are essential for monitoring outbreaks and pre-
dicting/preventing pandemic inception, a good example
being the recent study of Middle East Respiratory Syn-
drome coronavirus global transmission [30] (Additional
file 1 (Video S1)). But has the, field of evolutionary epi-
demiology quite reached its full potential? In this article,
we systematically discuss how the application of phylo-
dynamic methods has and will continue to impact epi-
demiological research and global public health to
understand and control infectious diseases locally and
across the globe.

The evolution of phylodynamics and overview of
current methodology
In a strict sense, the concept of phylodynamics is any-
thing but new. The phylogenetic tree reconstructed by
Haeckel in 1876 using phenotypic traits [31] was used to
explain the distribution of the earliest humans – the
“twelve races of Man”–across the globe and the location
of the “Centre of Creation.” This incorporation of both
spatial information and phylogenetic relationships in the
inference of population distributions and diversity among
geographical locations is a branch of phylodynamics, often
referred to as phylogeography. Since then, the progression
of genetic sequencing technology as well as geographical
information systems (GIS) has enabled evolutionary biolo-
gists to gain a higher resolution view of infectious disease
dynamics.
The 21st century, in particular, has witnessed unparal-

leled advances in methods and techniques for molecular
sequence data generation and analyses. However, the re-
lationship of progress and perfection is far from linear,
along with its relationship to navigational ease. For ex-
ample, phylodynamic inference has transitioned into a
highly statistics-focused process with the corresponding
challenges, including informative samples that can signifi-
cantly affect the accuracy of results [32–34]. Several re-
search groups [32, 33] have reviewed and/or demonstrated
the impact of neglecting critical quality control steps on
obtaining reliable inferences using the recently developed
phylodynamic frameworks, particularly with high through-
put, or next-generation, sequencing (NGS) data. Some im-
portant steps include ensuring uniform spatial and
temporal sampling [32], sufficient time duration between
consecutive sample collections for observing measurable
evolution [33], coverage of deep sequencing, and consider-
ation of genomic recombination [34].
The reliance on phylodynamic methods for estimating

a pathogen’s population-level characteristics (e.g., effective
population size) and their relationships with epidemio-
logical data suffers from a high cost – increasing the num-
ber of inference models, and thus parameters associated
with these models, requires an even greater increase in
the information content, or phylogenetic resolution, of
the sequence alignment and associated phenotypic data.
Low coverage [35] and the presence of organism- or
sequencing-mediated recombination [36], can skew es-
timates of the evolutionary rate and even impact the
underlying tree topology, particularly when dealing with
priors in the Bayesian statistical framework commonly
used for phylodynamic inference. Programs such as
SplitsTree [37] can take as input a nucleotide alignment
and output a network in which the dual origins of
recombinant sequences are displayed in a phylogenetic-
like context. However, network-reconstructing programs
have difficulty distinguishing actual recombination events
from phylogenetic uncertainty, and branch lengths do not
usually reflect true evolutionary distances [38]. Despite
much work ongoing in this area, there are currently no
broadly applicable methods that are able to reconstruct
phylogenetic network graphs that explicitly depict recom-
bination and allow for phylodynamic inference. Although
the Bayesian framework has shown to be fairly robust with
the inclusion of recombinant sequences in large popula-
tion studies [39], the inclusion threshold has not been
thoroughly investigated and is likely dependent on a num-
ber of factors, such as sample size and sequence length.
Recombinant sequences are thus usually removed prior to
analysis; however, the ability to incorporate recombinant
sequences is imperative given our knowledge of the role of
recombination in virus adaptation [40], for example. More
details on methods that can potentially account for re-
combination, applicable to a variety of pathogens, are
discussed by Martin, Lemey, & Posada [36].
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While the traditional realm of phylogenetics has fo-
cused on rapidly evolving viruses, the development of
whole-genome sequencing (WGS) has made possible the
expansion of phylodynamic methods to the analysis of
slower-evolving microorganisms, such as bacteria, fungi,
and other cell-based pathogens. WGS has widened the
range of measurably evolving pathogens, allowing for
the identification of sparse, genetically variable sites, re-
ferred to as single nucleotide polymorphisms (SNPs),
among populations sampled at different time points.
The use of WGS in phylogenetics is highly beneficial not
only in resolving relationships for slower-evolving organ-
isms but also in reconstructing a more accurate evolu-
tionary history (phylogeny) of an organism, rather than
the genealogy (single gene), which can differ significantly
from the phylogeny due to the presence of selective
pressure or even genetic composition [41]. However, as
with phylodynamic analysis of rapidly evolving viruses,
WGS analysis of cell-based pathogens comes with its
own challenges, as discussed in detail elsewhere [42].
Implementation of phylodynamic and/or phylogeo-

graphic analysis has transitioned over the last two decades
from maximum likelihood to the Bayesian framework.
This framework provides a more statistical approach for
testing specific evolutionary hypotheses by considering the
uncertainty in evolutionary and epidemiological parameter
estimation. Given surveillance data (e.g., the duration of
infection) and the specification of an epidemiological
mathematical model, Bayesian phylogenetic reconstruc-
tion can also be used to estimate epidemiological parame-
ters that might otherwise be difficult to quantify [21]. For
example, during the early stage of an epidemic, wherein
the pathogen population is growing exponentially, the rate
of exponential growth can be estimated from the phyl-
ogeny using a coalescent model that describes the waiting
time for individual coalescent events of evolutionary line-
ages. This rate estimate can be combined with knowledge
of the duration of infection for a particular pathogen to
estimate the basic reproduction number, R0 (e.g., [43]), as
well as the prevalence of infection and number of infected
hosts. Transmission dynamics can similarly be inferred
following the early exponential growth of the pathogen,
during which the pathogen has become endemic. Estima-
tion of these parameters is described more thoroughly in
Volz et al. [21].
With the expansion of phylodynamic methods to global

epidemics, theoretical studies have found that inferences
of infection dynamics within the coalescent framework
are limited by the assumption of a freely mixing popula-
tion [32]. This assumption is often violated with the inclu-
sion of several isolated geographical areas with single or
few pathogen introductions. Without considering this fac-
tor, population structure within a phylogeny can severely
bias inferences of the evolutionary history and associated
epidemiological parameters [32, 44]. To overcome this
limitation, software packages such as BEAST (Bayesian
Evolutionary Analysis Sampling Trees) [45–47] have re-
cently developed algorithms that allow for the integration
of coalescent, mathematical, and spatial diffusion models
[48–53]. More importantly, BEAST readily implements a
comparative phylogenetic approach, which incorporates
parameterization of phenotypic trait evolution to identify
predictors of population dynamics and spatial spread, all
of which are estimated/assessed simultaneously during re-
construction of the evolutionary history [54, 55]. Statistical
evaluation of the risk factors for pathogen population
growth and spread can be performed concurrently with
the assessment of phylogenetic resolution within the data
[54], discussed above as a challenge to complex phylo-
dynamic analyses. For example, in the absence of strong
phylogenetic resolution, Bayesian statistics are more
sensitive to long-branch attraction bias [56, 57],
wherein rapidly evolving lineages appear to be closely
related, regardless of their true evolutionary relation-
ships. This phenomenon, therefore, influences infer-
ences of spatiotemporal spread of the studied pathogen,
as well as estimation of the relationship of pathogen
population behavior with potential risk factors, such as
climate change, host and/or vector distribution, accessibility
and so on. The influence of low-resolution molecular data
on the reliability of phylodynamic inferences highlights the
importance of the implementation of the method described
by Vrancken et al. [54], or even a priori estimation of the
phylogenetic and temporal resolution (sufficient time
between sampling) [58, 59].
Unlike other phylogenetic frameworks, Bayesian in-

ference enables utilization of prior knowledge in the
form of prior distributions (in combination with infor-
mation provided by the data); however, abuse of prior
knowledge is possible and can lead to incorrect conclu-
sions. Even within the Bayesian school of thought, scien-
tists do not always agree with regard to the specification
of prior distributions under certain conditions. The in-
corporation of prior information is, however, intuitively
appealing, as it allows one to rationalize the probability of
an estimate based on previous knowledge of the typical
behavior of the parameter among populations of the or-
ganism under study. But what can we do if we have no
knowledge regarding a particular organism or population?
This has become a more pertinent issue recently with the
increasing rate of discovery, facilitated by NGS, of organ-
isms for which we have limited prior knowledge, such as
novel viruses and bacteria, [60]. One of the advantages of
the Bayesian phylodynamic approach is the ability to test
multiple hypotheses regarding the evolution or epidemio-
logical models used to describe infectious disease behavior,
but because of the intricate relationship of these models,
reliable inferences require testing of all combinations of
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the individual proposed models. Although often neglected
due to computational complexity, improved estimates of
marginal likelihoods used for statistical model comparison
have been demonstrated with less computational effort
[61]. Additionally, if we know that we know nothing about
the parameter in question, then, in fact, we know some-
thing. Referred to as the “objective Bayesian” approach,
this ideal allows researchers to alter a normally “subject-
ive” prior to create one that is minimally informative.
This term is used because the impact of this type of
prior on parameter estimation can be controlled to a
minimum, allowing the data to dominate the analytical
process and conclusions drawn [62]. Although similarly
appealing, this approach can be particularly problem-
atic with small datasets [63] or biased datasets, such as
the exclusion of potential intermediate sampling loca-
tions [27]. The expanding volume of sequence data and
increasing efforts to combine epidemiological and la-
boratory data in open access locations can help to im-
prove evolutionary estimates. Additionally, the growing
availability of data and collaboration can accelerate our
understanding of the emergence and spread of infec-
tious diseases through coordinated efforts by multi-
disciplinary researchers across various institutions and
public health organizations. More detail on the benefits
of open access databases and data sharing in the con-
text of phylogenetic epidemiology is reviewed in [64]
and [65].

Results and Discussion
Evolutionary reconstruction of spatiotemporal
transmission: dengue virus and applications to other
vector-borne tropical pathogens
Combining pathogen genetic data with host popula-
tion information (e.g., population density and air
traffic) in a statistical framework is critical for the reli-
able assessment of factors potentially associated with
pathogen population dynamics and geographic spread.
The comparative phylogenetic approach described
above [66] was used recently to identify potential de-
terminants of the dengue virus (DENV) introduction
to and spread within Brazil. Results from Nunes et al.
[67] suggested that for three DENV serotypes, the es-
tablishment of new lineages in Brazil had been occur-
ring within 7 to 10-year intervals since their primary
introduction in 1985, most likely from the Caribbean.
Additionally, they observed that aerial transportation
of humans and/or vector mosquitoes, rather than dis-
tances between geographical locations or mosquito
(particularly Aedes aegypti) infestation rates, were
likely responsible. The study by Nunes et al. marked
one of the first uses of the comparative phylogenetic
approach for vector-borne tropical diseases and im-
plies the need for a similar approach in future studies
aimed at investigating transmission patterns of a broad
range of emerging vector-borne viruses. For example, this
approach will allow researchers to determine if specific
universal factors, such as vector species, are predictive of
global transmission route or if health policy and preven-
tion strategies tailored specifically to the pathogen, irre-
spective of the vector, are required for effective control.

The evolution of an epidemic revolution: Zika
virus
With the development of molecular clock models for
serially sampled data [68], phylogenetic analyses have
helped to uncover the timing of transmission events and
epidemiological origins. Moreover, when paired with
comparative phylogeographic models, researchers have
been able to identify risk factors most likely associated
with these particular events. Since the inception of the
Zika virus (ZIKV) pandemic around May of 2015 in
Brazil [69], phylogeneticists and epidemiologists have
sought to reveal mechanisms by which ZIKV has spread
and the factors fueling the wide geographical leaps. A
full-genome phylogeographic analysis of ZIKV isolates
collected during 1968–2002 revealed very intricate spa-
tiotemporal transmission patterns across Africa prior to
the introduction into Asia [70]. From its origin in
Uganda, two independent transmission events appeared
to play a role in the spread of ZIKV from East Africa to
the West circa 1920: the first involved the introduction
of ZIKV to Côte d’Ivoire with subsequent spread to
Senegal, and the second involved the spread of the virus
from Nigeria to West Africa. Results from spatiotempo-
ral analysis demonstrated that Uganda was the hub of
the African epidemic as well as the common ancestor of
the Malaysian lineages sampled during the 1966 out-
break [70].
Following the emergence and rapid spread of ZIKV in

Brazil and other South American countries [69], Faria’s
group sought to further characterize the spatiotemporal
dynamics of ZIKV following introduction into this re-
gion [26]. In addition to sequencing data, air traffic data
for visitors to Brazil from other countries associated
with major social events during 2012–2014 were in-
cluded to test different hypotheses of airline-mediated
introduction of ZIKV in Brazil. The results linked the
origin of the Brazilian epidemic to a single introduction
of ZIKV estimated to occur between May and December
2013, consistent with the Confederations Cup event, but
predating the first reported cases in French Polynesia.
Although these findings are of great value and import-
ance to public health organizations, the authors drew an
additional, and similarly valuable conclusion–large-scale
patterns in human (and mosquito) mobility extending
beyond air traffic data will provide more useful and test-
able hypotheses about disease emergence and spread
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than ad hoc hypotheses focused on specific events. This
conclusion further supports the proposal for greater
availability of epidemiological data among the scientific
community.
Understanding both the rapid spread of the virus

throughout South and Central America and the Caribbean
as well as the initial emergence of the virus from the
Ugandan Zika forest in the early 1900s is important for
application to the control of future outbreaks, but in-
creasing data may not be the only answer. Moreover,
several different risk factors are likely responsible for
these two migration events. Therefore, a more compre-
hensive approach that allows for the analysis of mul-
tiple potential factors and their distinct contribution to
independent migration events without the loss of
information (i.e., use of data that span the entire evolu-
tionary history) is imperative for fully understanding a
global epidemic from beginning to present.

A combined approach to understanding the
emergence and expansion of an epidemiologically
diverse viral population: HIV CRF02_AG in the
Congo River basin
Although viral spread is often attributed to human mo-
bility [71], factors such as population growth and acces-
sibility can also play an important role, as with the
emergence of human immunodeficiency virus type 1
(HIV-1) group M subtypes A and D in east Africa [72]
and circulating recombinant form (CRF) 02_AG in re-
gions of the Congo River basin (CRB) [73]. The demo-
cratic republic of Congo (DRC) has been reported to be
the source of HIV-1 group M diversity [74–76]; however,
the epidemiological heterogeneity of CRF02_AG within
surrounding regions comprising the CRB had remained
a mystery since its discovery in 1994 [77], with preva-
lence ranging from virtual non-existence [78–83] to ac-
counting for as high as 20% of infections [84], depending
on the geographical location. The region with the highest
proportion of CRF02_AG infections, Cameroon [85, 86],
has been characterized by a rapidly growing infected
population (0.5% in 1985 to 6% in 2008 [87]), of which the
majority (60%) is caused by this clade. Using both molecu-
lar sequence data and UNAIDS surveillance data [88], the
spatiotemporal origin of CRF02_AG was estimated to
occur in the DRC in the early 1970s (1972–1975), with
the rapid viral population growth in Cameroon following
a chance exportation event out of DRC.
Although similar phylodynamic techniques as de-

scribed above for other viral species were used to infer
the spatial origins of CRF02_AG, the timing of the origin
of this viral clade was inferred using both coalescent
analysis of molecular sequence data and prevalence in-
formation [73, 89]. Coalescent models allow for estima-
tion of the effective population size (Ne), of fundamental
importance to infectious disease epidemiology, as it de-
scribes the level of genetic diversity within a population
over the course of its evolutionary history. During the
exponential growth period of an epidemic, the change in
Ne has been shown to linearly correlate with prevalence
of infection [90, 91] and can, therefore, be used to esti-
mate the latter, as mentioned above, but also, when
combined, Faria et al. [73] were able to show that fitting
of Ne and prior prevalence data can narrow the uncer-
tainty of the temporal origin estimates by over 29% as
compared to coalescent estimates alone. Furthermore,
surveillance data was recently used during simultaneous
phylodynamic coalescent estimation to identify factors
associated with Ne dynamics throughout the entire
evolutionary history of the Cameroonian sequences [92],
revealing that changes in Ne were more reflective of in-
cidence dynamics rather than prevalence, consistent with
previous mathematical modeling [90, 91]. Although as-
sociations between Ne and potentially related factors are
frequently assessed, statistical analysis of these has until
recently been primarily limited to post hoc examination
(e.g., [91, 93]), which ignores uncertainty in demographic
reconstruction, as discussed above. Simultaneous imple-
mentation of evolutionary reconstruction and estimation
of the relationship of covariate data with Ne will be
available in the newest version of BEAST v1 [92].
Although this tool has obvious implications for global
assessment of factors contributing to the growth and dy-
namics of an epidemic, similar applications of this
method to other data sets has suggested that reduced
molecular data relative to covariate data may result in an
impact of inclusion of the data on Ne estimates. This
finding posits a potential concern for convenience se-
quence sampling, as factors that are not responsible but
are represented by large amounts of data may influence
Ne estimates, resulting in unreliable population dynamic
inferences. As mentioned above, care is needed to ensure
sufficient sampling and an appropriate sampling strategy
for reliable reconstruction of the evolutionary and epi-
demiological history of the infectious organism of interest.

Tracing the source of nosocomial outbreaks:
Methicillin-resistant Staphylococcus aureus
Traditional phylodynamic analysis applied to nosocomial
outbreaks has been successfully used in the past to iden-
tify the likely source; however, the inclusion of extensive
patient data, such as treatment regimens, admission and
discharge dates, and length of stay, can improve not only
phylogenetic estimates but also the translation of the in-
terpretation to public health policy. Epidemiological and
genomic data on Methicillin-resistant Staphylococcus
aureus (MRSA) infections were recently utilized by
Azarian and colleagues to reconstruct MRSA transmis-
sion and to estimate possible community and hospital
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acquisitions [94]. Findings from this study revealed that
as high as 70% of the MRSA colonization within the
hospital’s neonatal intensive care unit (NICU) was ac-
quired within the NICU itself. These findings indicated
that current, standard prevention efforts were insufficient
in preventing an outbreak, calling for the improvement of
current care or alternative implementation strategies.

Conclusions
The earlier uses of phylodynamic methods focused pri-
marily on the molecular evolution of rapidly evolving
viruses, greatly advancing the fields of virus vaccine and
treatment strategies [23]. On the other hand, epidemio-
logical approaches have focused on influential factors
related to social, economic, and behavioral patterns. In-
tegrating the phylodynamics and epidemiology ap-
proaches into a single analytical framework, referred to
as evolutionary epidemiology [24, 25], represents one of
the most powerful multi-disciplinary platforms. Exam-
ples discussed herein of the adoption of an integrative
and multifactorial mindset reveal the potential for accel-
erating our understanding of the emergence and spread
of global infectious diseases, presently expanded to in-
clude bacterial and other cell-based pathogens. However,
although a highly evolved analytical platform and an im-
proved understanding of the translation of molecular
evolutionary patterns to infection and transmission dy-
namics have aided in facilitating this transition, several
challenges still remain.
The 21st century has witnessed a major shift in

breadth of scientific knowledge at the level of the indi-
vidual researcher, requiring more focused training (e.g.,
molecular mechanisms) and greater collaborative efforts;
meanwhile, a consensus of commonality and cross-
disciplinary understanding is necessary for globalization
of not only the economy, but also public health. This
kind of understanding can be better achieved through
interdisciplinary instruction on the theoretical and
application skills related to both phylogenetics and
epidemiology during early education. If successfully
achieved, this combined training, in addition to access
to modern NGS technology, such as handheld se-
quencers, would increase the mobility of labs and re-
searchers, expanding the concept of lab-based research.
Mobilized labs would, in turn, reduce our current reli-
ance on few major public health organizations and the
impact of limited resources on sampling and surveil-
lance in developing countries.
Increasing mobility is nevertheless inconsequential

without the cooperative sharing of genomic and epidemio-
logical information. Although data are typically readily
available to the public following peer-reviewed publica-
tion, the median review time of manuscripts submitted to,
for example, Nature is 150 days [95], this in addition to
the time required for thorough analysis of the original
data. This timeline seems quite long in retrospect of the
1918 “Spanish flu,” which spread to one-third of the global
population in a relatively brief 12-month period [96]. Data
sharing prior to publication, even if only among a propor-
tion of consenting institutions, may accelerate the process
of dissemination of research findings to public health deci-
sion makers and practitioners, and its practice is not en-
tirely unheard of. An excellent example of this type of
collaboration is the “nextstrain” project (http://www.next
strain.org/). Nextstrain is a publicly available repository
currently comprised of evolutionary datasets for Ebola,
Zika, and avian and seasonal influenza viruses contributed
by research groups from all over the world for the purpose
of real-time tracking of viral epidemics. Similar projects
have also recently developed in other research fields.
Modeled after the Stand up to Cancer initiative, the
Synodos collaborative funded by the Children’s Tumor
Foundation in partnership with Sage Bionetworks brings
together a consortium of multidisciplinary researchers,
who have agreed to the sharing of data and relevant infor-
mation, as well as results [97]. The ultimate goal of this
cooperation is to accelerate the drug discovery process,
which is highly applicable to global infectious disease
research.
Without a similar collaborative approach to Synodos,

the preparedness of the global reaction to rising epi-
demics is at risk. Recent years have been marked by local
outbreaks across vast geographical regions within a
timespan of months to years. Hence, both the rapid dis-
semination of data and results and the rapid response of
government and public health organizations are required
for the effective prevention of a global epidemic, or pan-
demic. Additionally, with the type of results, particularly
risk factors, that are generated using this multifaceted
approach (e.g., both human population and pathogen
molecular characteristics), the question then arises of
how organizations will actually utilize this information
for treatment and prevention strategies. Moreover, as
the techniques and methods advance, are the infrastruc-
tures in place for global cooperation and immediate re-
sponse following the presentation of a potentially more
complex story?
Although gaps remain in current evolutionary model-

ing capabilities when used with epidemiological surveil-
lance data, it is only a matter of time before the
challenges described herein and elsewhere are met with
more realistic models that capture the complexity of in-
fectious disease transmission. Furthermore, theoretical
research in the field of infectious disease phylodynamics
is still growing. Consequently, there is a need for a review
of the more recently developed methods and techniques
and their performance, as well as their application in
areas within and outside the realm of infectious disease.

http://www.nextstrain.org/
http://www.nextstrain.org/
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For example, in the era of global health, translational
genomics, and personalized medicine, the accumulating
availability of genetic and clinical data provides the
unique opportunity to apply this approach to studies of,
e.g., tumor metastasis and chronic infections, which
comprise complex transmission dynamics among tissues
and/or cell types, not unlike the geographical spread of
infectious diseases.

Additional file

Additional file 1: Video S1. Phylodynamic inference of global spread
of Middle East Respiratory Syndrome coronavirus from 2008 to 2015.
(MOV 14155 kb)
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